Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 19(12): 4487-4505, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36305753

RESUMO

Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.


Assuntos
Melanoma , Terapia Viral Oncolítica , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Preparações Farmacêuticas , Ipilimumab , Vemurafenib/uso terapêutico , Neoplasias Cutâneas/patologia
2.
Small ; 18(14): e2106093, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35191181

RESUMO

Understanding phase transitions of ultrathin metal silicides is crucial for the development of nanoscale silicon devices. Here, the phase transition of ultrathin (3.6 nm) Ni silicides on Si(100) substrates is investigated using an in situ synthesis and characterization approach, supplemented with ex situ transmission electron microscopy and nano-beam electron diffraction. First, an ultrathin epitaxial layer and ordered structures at the interface are observed upon room-temperature deposition. At 290 °C, this structure is followed by formation of an orthorhombic δ-Ni2 Si phase exhibiting long-range order and extending to the whole film thickness. An unprecedented direct transition from this δ-Ni2 Si phase to the final NiSi2- x phase is observed at 290 °C, skipping the intermediate monosilicide phase. Additionally, the NiSi2- x phase is found epitaxial on the substrate. This transition process substantially differs from observations for thicker films. Furthermore, considering previous studies, the long-range ordered orthorhombic δ-Ni2 Si phase is suggested to occur regardless of the initial Ni thickness. The thickness of this ordered δ-Ni2 Si layer is, however, limited due to the competition of different orientations of the δ-Ni2 Si crystal. Whether the formed δ-Ni2 Si layer consumes all deposited nickel is expected to determine whether the monosilicide phase appears before the transition to the final NiSi2- x phase.

3.
PLoS Pathog ; 14(6): e1007092, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29864161

RESUMO

Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.


Assuntos
Proteínas de Bactérias/genética , Resistência à Doença/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Xanthomonas/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica de Plantas , Genoma Bacteriano , Interações Hospedeiro-Patógeno , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...